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(a) Original image (b) Traditional white balance (c) Our result

Figure 1: Image (a) shows a photograph under mixed flash and indoor lighting. Traditional white balance (b) produces unnatural results
because it cannot deal with spatially varying light color. Here, the yellow color cast is still visible, and parts of the face have a blue cast. By
estimating the relative contribution of lights at each pixel, our technique is able to reproduce colors more faithfully (c).

Abstract

White balance is a crucial step in the photographic pipeline. It en-
sures the proper rendition of images by eliminating color casts due
to differing illuminants. Digital cameras and editing programs pro-
vide white balance tools that assume a single type of light per im-
age, such as daylight. However, many photos are taken under mixed
lighting. We propose a white balance technique for scenes with two
light types that are specified by the user. This covers many typical
situations involving indoor/outdoor or flash/ambient light mixtures.
Since we work from a single image, the problem is highly under-
constrained. Our method recovers a set of dominant material colors
which allows us to estimate the local intensity mixture of the two
light types. Using this mixture, we can neutralize the light colors
and render visually pleasing images. Our method can also be used
to achieve post-exposure relighting effects.

Keywords: image processing, computational photography, white
balance, color constancy

1 Introduction

The human visual system has the ability to interpret surface colors
independently of surrounding illumination. This is known as color
constancy [Wandell 1995]. In the photographic pipeline, the white
balance function emulates this ability to ensure the natural rendition
of images. Without proper white balance, many typical scenes show
undesirable color casts. For instance, a photograph taken under
incandescent lighting will appear unnaturally orange.

All modern cameras and photo editing packages include some func-
tionality to restore natural white balance. These tools generally
assume a single illuminant. Unfortunately, many scenes are illu-
minated by a mixture of lights with different color temperatures.
A typical example is a flash photograph in which the foreground
subject has a cold blue cast and the background is lit by warmer
lights (Figure 1). Classical white balance techniques assume a sin-
gle light color, yielding unsatisfactory results. To deal with these
scenes, professional photographers use gel filters to bring all lights
to the same color temperature. This allows them to apply traditional
white balance techniques afterwards. While this is an effective ap-
proach, it often requires an impractical amount of time and effort.

We present a white balance technique for scenes with two light
types that we assume are provided by the user. This two-light sce-
nario is motivated by practical scene configurations involving in-
door/outdoor or flash/ambient lighting. Our technique estimates the
relative contribution of each light color at each pixel, which we call
the mixture. This is a severely ill-posed problem because we have
only one image as input. We overcome this difficulty by assuming
that the scene is dominated by a small set of material colors. Using
this assumption, we propose a new voting scheme and a new inter-
polation method that retrieves the light mixture at every pixel. We
show that this information makes it possible to white balance the
input image and also to apply simple relighting effects.

Contributions. To solve the white balance problem for two types
of light, our paper introduces the following contributions:

• We present a method to estimate the light mixture per pixel,
assuming the light colors are given by the user (Figure 2).

• To achieve this goal, we first evaluate the material colors at a
sparse set of pixels. We use a voting scheme that assumes a
small set of material colors [Omer and Werman 2004] (§ 4).

• To extend the mixture to the entire image, we formulate white
balance as a matting problem in chromaticity space and solve
it with the matting Laplacian [Levin et al. 2006] (§ 5).

• We show that recovering the light mixture at each pixel allows
for the independent control of light colors and intensities (§ 7).



(a) Input (tungsten and daylight) (b) Voting (white material color) (c) Voting (brown material color)

(d) Mixture constraints (e) Interpolated mixture (f) Our result

Figure 2: An overview of our approach. Given an input image (a), we extract dominant material colors using a voting technique. Here, it
identifies pixels corresponding to white (b) and brown (c) material colors. This information is used to estimate the local relative contributions
of each light (d). The voting scheme only labels reliable pixels. The unreliable pixels, shown in blue, are inferred using an interpolation
scheme (e). The mixture information can then be used to compute a visually pleasing white balance (f).

2 Related Work

Many simple techniques have been proposed for white balance and
the related problem of color constancy. The white-patch technique
assumes that all scenes contain an object with white reflectance, and
the gray-world technique assumes that the average color in a scene
is neutral [Buchsbaum 1980]. More modern techniques exploit ge-
ometric models of color space [Forsyth 1990; Finlayson and Hord-
ley 2000]), statistical knowledge about lights and colors [Brainard
and Freeman 1997; Finlayson et al. 2001], novel observations about
scenes [van de Weijer and Gevers 2005], and natural image statis-
tics [Gijsenij and Gevers 2007]. These are successful on a variety
of real-world photographs, but they all assume that only a single
illuminant type is present.

An option to extend color constancy methods to mixed lighting is
to let users segment images into regions lit by a single type of light.
Image editors such as Adobe Photoshop offer selection tools to re-
strict the spatial extent of color correction filters. Lischinski and
colleagues [2006] show a scribble interface that can successfully
correct localized color casts. We instead aim for an automatic pro-
cess with less localized correction, since illumination may affect
large disconnected portions of an image.

A few automatic methods have been proposed to handle scenes with
mixed lighting. These are the most related to our work. Barnard
and colleagues [1997] describe a technique that removes the color
variations between different types of lights in the scene before ap-
plying a gamut-based color constancy technique [Finlayson 1995].
However, this method employs a classical assumption of smooth il-
lumination [Land and McCann 1971] which is often violated at geo-
metric discontinuities. Kawakami and colleagues [2005] describe a
related method for large objects in outdoor scenes. Unlike our tech-
nique, they do not require the light colors beforehand. However,
this automation is achieved through more restrictive assumptions.

They assume that all shadows are hard and that lights are black-
body radiators; in contrast, our technique handles both hard and soft
shadows from a greater variety of light source types. Ebner [2004]
introduces a method based on a localized gray-world assumption.
His method is effective when objects are predominantly gray, but
it struggles when large colored objects are introduced. Addition-
ally, his assumption of smooth illumination can result in color halo
artifacts, as shown in Figure 8.

3 Image Model

Assumptions. In general form, the white balance problem is
highly underconstrained because each pixel corresponds to an un-
known illuminant and reflectance spectrum. Our technique focuses
on a specific scenario described by the following hypotheses:

• The interaction of light can be described using RGB channels
only, instead of requiring full spectra.

• Surfaces are Lambertian and non-fluorescent, so image color
is the product of illumination and reflectance in each channel.

• Color bleeding due to indirect illumination can be ignored.

• There are two illuminant types present in the scene and their
colors are known beforehand.

• Scenes are dominated by only a small number of material col-
ors. In other words, the set of reflectance spectra is sparse.

The first hypothesis is similar to von Kries chromatic adaptation,
but in RGB space. The use of a more advanced color space such as
that of Chong and colleagues [2007] might also be fruitful, but we
opt for the simpler approach. The next two hypotheses are common
among existing white balance techniques for single illuminants.



The last two hypotheses are crucial since they differentiate our ap-
proach from prior work. Many mixed lighting configurations con-
tain only two light types; for instance, it is common for indoor pho-
tographs to mix flash/ambient or indoor/outdoor lighting. The as-
sumption of few material colors draws from the work of Omer and
Werman [2004] in image analysis and the work of Levin and col-
leagues [2006] in matting.

Image Formation. For a single illuminant, our assumptions yield
the image formation model I = k RL. Here, I is a 3 × 1 vector
containing the observed RGB pixel color, R is a diagonal 3×3 ma-
trix representing the spectral reflectance at some pixel, and L is a
3×1 vector containing the illuminant color. The scalar k represents
factors that influence light intensity such as shadowing, surface ori-
entation, and illuminant power. Note that there is a scale ambiguity
between these terms; an object twice as dark lit by a light twice
as bright will produce the same result. We can extend this to two
illuminants L1 and L2 with respective intensities k1 and k2:

I = R(k1 L1 + k2 L2). (1)

In our formulation, the spectral reflectance term R and the intensi-
ties k1 and k2 are unknown and vary per pixel. The light colors L1
and L2 are known and constant over the scene.

White Balance. White balance removes color casts induced by
colored light sources. It produces an image as if all the lights are
white, that is, if Li = 1 = [1,1,1]T for all i. We can model it by
defining a matrix W = diag(Wr,Wg,Wb) as follows:

WI = WR(k1 L1 + k2 L2) = R(k1 1+ k2 1). (2)

This yields the following expression for color channels c ∈ {r,g,b}:

Wc =
k1 + k2

k1 L1c + k2 L2c
=

1
α L1c +(1−α)L2c

with α =
k1

k1 + k2
. (3)

In other words, we can perform white balance without knowing k1
and k2; only their relative proportions are needed. Thus, our goal is
to solve for the mixture α at each pixel.

4 Material Color Estimation

We first recover a representative set of material colors in the scene.
This will be used to estimate local light mixtures. Recovering ma-
terial colors under the influence of unknown spatially varying light
mixtures is a highly underconstrained problem. To arrive at a prac-
tical method, we follow Omer and Werman [2004]. They observe
that natural scenes are dominated by a small set of material colors
and apply this assumption to image analysis tasks such as segmen-
tation. We verify this hypothesis with images illuminated by white
light. For these images, I = k 1R, which means that the observed
pixel color corresponds to the material color up to a scale factor.
As illustrated in Figure 3, it is typical in such images for mate-
rial chromaticity values to cluster around a few values. But under
mixed illumination, the density peaks are smeared out because the
measured colors can be any linear combination of two components
(Equation 1). Since this combination is arbitrary, no single pixel
can yield a reliable estimate of material color. We overcome this
difficulty by gathering estimates from as many pixels as possible.

Voting Scheme. We begin by densely sampling the set of pos-
sible material colors. Since there is a scale ambiguity in the im-
age formation model (Equation 1), we do not sample albedo values
which differ only by a scale factor. We divide this space into a
32× 32 grid with logarithmic spacing so that r/b and b/r are simi-
larly sampled, thereby yielding an even distribution of colors.

log r/blog g/b

(a) White light image and histogram

log r/blog g/b

(b) Mixed light image and histogram

Figure 3: For photographs under white lighting, chromaticity val-
ues tend to cluster around a few values (a). Under mixed lighting,
these peaks are smeared out lines (b) because the image is a blend
of two components.

Given a material color R0 and pixel with observed color I, we can
solve Equation 1 because there are two unknowns (k1 and k2) and
three linear relationships (one per channel). Since k1 and k2 are at-
tenuation factors, we clamp them to be non-negative. If the residual
‖I−max(0,k1)R0 L1−max(0,k2)R0 L2‖ is less than some thresh-
old, we say that the pixel votes for the material color R0. Intuitively,
a pixel votes for a material color only if its observed color can be
explained by lighting variations. This voting scheme is similar in
spirit to the Hough transform [Hough 1962]. We use a threshold of
0.02 (with color channel values between 0 and 1).

Set Estimation. We greedily process the material colors, starting
with the one with the most votes. The pixels that vote for this color
are marked. The remaining unmarked pixels then vote for the sec-
ond most popular material color. This process continues until the
number of votes for the top sample is too small. Our implementa-
tion stops at 4 percent of the total number of pixels. This process
yields a small set of material colors {Rn}.

At the end of this step, each marked pixel has voted for a material
color which explains its observed color well. A caveat is that some
pixels can be accounted for by multiple material colors in the set
{Rn}. To detect these ambiguous pixels, we test every marked pixel
against the material color set. If the residual is small for more than
one of the material colors, we unmark the pixel. For the remain-
ing marked pixels, we have a reliable estimate of k1 and k2 from
which we can compute mixture values α according to Equation 3.
The unmarked pixels are considered unreliable and their computed
mixture values are discarded. In the following section, we propose
an interpolation scheme to fill in these missing values.

Discussion. This technique works well for many typical images,
but certain pathological situations may occasionally arise and cause
errors. For instance, two pixels with different material colors might
have the same observed color due to coincidental lighting condi-
tions. Our technique will mistakenly group these pixels together
during voting, but they often end up being unmarked because they
cast multiple votes. It is also possible that certain material colors
do not exhibit enough mixture variation for voting to work, such as
in the case of a uniformly lit wall. However, most scenes contain
sufficiently variable lighting due to factors like falloff and shadows.



5 Mixture Interpolation

Our voting scheme yields the mixture of lights for a subset of a pix-
els. Here, we describe how we extend these values over the entire
image using interpolation (in other words, to fill in the blue pix-
els in Figure 2d). Edge-aware schemes (e.g., [Levin et al. 2004;
Lischinski et al. 2006]) are common for these tasks. We instead ap-
ply the matting Laplacian [Levin et al. 2006] in chromaticity space
for superior results. These techniques are compared in Figure 4.

White Balance as Matting. In this section, we show that the light
mixture α can be treated similarly to the foreground/background
mixture in matting. But instead of the RGB space used for matting,
we use the [r/b,g/b] chromaticity space described in § 4. This could
in theory yield instabilities for small values of b, but in our experi-
ments we found that most natural images have nonzero values in all
color channels.

Define I′ = [Ir/Ib, Ig/Ib] = [I′rb, I
′
gb]. Then Equation 1 yields the fol-

lowing expression for Icb ∈ {Irb, Igb}:

I′cb =
Ic

Ib
=

Rc

Rb

(
k1 L1c + k2 L2c

k1 L1b + k2 L2b

)
= R′

cb

(
k1 L1c + k2 L2c

k1 L1b + k2 L2b

)
. (4)

We use the scaling degree of freedom to impose L1b = L2b = 1 and
distribute the material chromaticity R′:

I′ = α R′ L′
1 +(1−α)R′ L′

2. (5)

This is the relationship that we seek: image chromaticities I′ are
a linear blend of the material chromaticity R′ multiplied by the
light chromaticities L′

1 and L′
2. This is similar to the classical fore-

ground/background mixture problem in matting and suggests that a
matting technique can be used to interpolate our data.

The Matting Laplacian. Levin and colleagues employ the color
line model in their matting algorithm [2006]. A set of pixels follows
this model if their colors lie on a line in RGB space. By assuming
that both the foreground and background of an image are locally in
this configuration, they demonstrate that the pixel opacities β can
be obtained by minimizing the quadratic β T Mβ , where M is the
matting Laplacian. Element ij of M is defined by considering pairs
of pixels i and j in windows wk centered around pixels k:

∑
k | ij∈wk

[
δij −

1
|wk|

(Ii −μk)
[

Σk +
ε

|wk|
E3

]−1
(Ij −μk)

]
. (6)

In this expression, Ii and Ij are the colors at pixels i and j; δij is 1 if
i= j and 0 otherwise, μk and Σk are the mean and variance of pixel
colors in window wk, E3 is the 3×3 identity matrix, ε is a regular-
izing constant and |wk| is the number of neighborhood pixels. See
the article of Levin and colleagues for a complete derivation.

For white balance, Equation 5 shows that the chromaticity image I′
is a linear combination of R′ L′

1 and R′ L′
2 controlled by the light

mixture α . Thus, if we assume that R′ L′
1 and R′ L′

2 locally lie on
a line in chromaticity space, the matting Laplacian can be adapted
to solve for α . We define element ij of matrix M′ as follows (using
notation from Equation 6 for two dimensions instead of three):

∑
k | ij∈wk

[
δij −

1
|wk|

(I′i −μk)
[

Σk +
ε

|wk|
E2

]−1
(I′j −μk)

]
. (7)

Intuitively, the color line model in chromaticity space can be inter-
preted as follows. Since L′

1 and L′
2 are constant with respect to the

scene, it follows that values of R′ also locally form a line. This in

(a) Ground truth (b) Edge-aware

(c) Matting Laplacian on RGB data (d) Our result

Figure 4: Given a ground truth image (a), we constrain a few points
(b) and reconstruct the remainder of the image through interpola-
tion. Edge-aware interpolation gives poor results (b). The matting
Laplacian in RGB space does much better (c); applying it in chro-
maticity space further enhances the recovered data (d).

turn implies that values of R locally form a plane containing the
origin. To summarize, Equation 7 provides a closed-form solution
for interpolating light mixtures under the assumption that material
colors locally follow a color plane model.

Solving the Mixture. The voting scheme in Section 4 provides a
set of mixture constraints which we gather into a vector α∗. We
use this in a data term to guide the interpolation process. The final
objective function that we minimize is:

J(α) = αT M′ α + λ (α−α∗)T D (α−α∗). (8)

Here, D is a diagonal matrix that selects the marked pixels from the
voting step; that is, element dii is 1 if pixel i has a reliable mixture
estimate, and 0 otherwise. The scalar λ balances smoothness of
interpolation and fidelity to the data term. This quadratic function
can be minimized using a standard sparse matrix solver. In our im-
plementation, we use λ = 10−2 and ε = 10−6 for the regularization
in Equation 7. The particular choice for λ yields soft constraints
on α , thereby letting the Laplacian regularize the results. This is
useful for fixing small errors made by our voting scheme caused by
missing colors or ambiguous pixels.

6 Application

The previous steps provide us with a way to estimate the relative
light contributions α at each pixel of a single input image. This
can be used to perform white balance using Equation 2. In this
section, we discuss several practical issues that arise when applying
our technique.

Input. Our image formation model assumes linear image values.
For processed files such as JPEGs, it is necessary to achieve lin-
ear gamma by inverting the transformations applied by the cam-
era or software. However, this process may introduce artifacts due
to quantization and pixel saturation. The best results are achieved
from images that are inherently linear, such as those obtained di-
rectly from digital camera raw files.



Light Colors. Our approach assumes that the two light colors in
the scene are known. Here, we propose a simple interface to esti-
mate these colors. Many scenes contain objects with neutral ma-
terial colors. We ask the user to click on several of these objects.
From our image formation model, we know that their pixel values
are of the form k1 L1 + k2 L2 with k1 ≥ 0 and k2 ≥ 0. We choose
the pixels with the most extreme color casts and assume that they
correspond to (k1,k2) = (0,1) and (k1,k2) = (1,0). This allows us
to solve for the light colors up to a scale factor. A typical usage
scenario is shown in Figure 6.

Unfortunately, not all scenes contain neutral objects. For these sit-
uations, a user can borrow measurements from other photos taken
under identical lighting conditions. As with traditional white bal-
ance techniques, the same calibration can often be reused for multi-
ple photos. However, it is important to note that our technique does
not perform well if light colors are incorrectly specified.

Scalability. Both the voting and the interpolation schemes are
computationally intensive and not tractable at full resolution. We
overcome this problem by working on downsampled images with
larger dimension 640. We upsample the light mixtures using joint
bilateral upsampling [Kopf et al. 2007] and perform white balance
by applying Equation 2 at full resolution.

Light Filtering. With the white-balanced image WI and the light
mixture α , we can recover the images corresponding to each of the
two lights separately:

α WI =
(

k1

k1 + k2

)
R(k1 1+ k2 1) = k1 R. (9)

In other words, α WI is a white-balanced image of the scene lit
only by the first light. Equivalently, (1−α)WI corresponds to the
second light. With these two components at hand, we can apply any
effect to either of the lights separately, as shown in Figure 5.

(a) Our result (b) Dim exterior (c) Dim interior

(d) Input image (e) Our result (f) Color change

Figure 5: We can achieve additional postprocessing effects. Using
the mixture, lights can be dimmed (b,c) and colored (f) separately.

(a) User input (b) Our result

Figure 6: To specify lights, a user clicks on parts of an image with
neutral material color (a). We interpret the two most extreme color
casts as the light colors. After this step, our technique requires no
more user interaction to produce high-quality results (b).

7 Results

We have applied our method to a variety of input images. Our
technique significantly reduces the color casts introduced by mixed
lighting and produces visually pleasing images. In general, we
found that our method yields its most successful results in indoor
environments, as shown in Figure 8. Such scenes often satisfy the
assumption of sparse material color.

In Figure 7, we validate our technique on two synthetic examples.
Here, the input images are generated by combining two images of
the same scene taken under different single-light conditions. This
enables the computation of ground truth mixture values and white
balance results. On the first set of images, the highest errors appear
on the left apple (which has a dense mixture of material colors)
and in the fold of the paper (where there is some color bleeding).
These regions violate the hypotheses of our image formation model.
Nevertheless, the output image is not visually objectionable despite
the presence of numerical error.

On the second set of images in Figure 7, the highest errors appear on
the stuffed toy. This is due to incorrect estimation of the green ma-
terial color during the voting process. Even so, our method removes
the unsightly color variation from the original input. We show
that the numerical difference from ground truth, while nonzero, is
roughly constant over the toy. Also note how our technique re-
moves the coloration in the specular highlights, even though these
specularities violate our image model.

8 Discussion

Although the assumptions of our image model may be violated in
some situations, we have shown that our method is robust for a vari-
ety of typical images. Our technique produces pleasing results even
in the presence of specularities and interreflections. However, it is
not foolproof since it needs to see the same material color under dif-
ferent lighting mixtures. This may not hold in certain photographic
situations. For instance, if all light sources very diffuse, the mix-
ture α may be nearly constant over the scene; this presents a highly
ambiguous situation to the voting scheme. Scenes that exhibit a
strong foreground-background separation may also cause problems
if there is no mixing of the lights (that is, if α is a binary mask).
Fortunately, we have found that these cases are rare in practice.

Our technique requires a small amount of user interaction to spec-
ify light sources. The required effort is negligible when process-
ing several images. However, for large batches of photos, it is still
desirable to achieve full automation. A potential solution might
be to constrain the possible illuminants, perhaps to a canonical set
[Finlayson et al. 2001] or to blackbody radiators [Kawakami et al.
2005]. We hope to address this problem in future work.



(a) Synthetic input (b) Ground truth (c) Our result (d) Difference ‖(b)− (c)‖ (e) Difference ‖(b)− (a)‖

(f) Synthetic input (g) Ground truth (h) Our result (i) Difference ‖(g)− (h)‖ (j) Difference ‖(g)− (f)‖

Figure 7: For evaluation, we build synthetic input images (a,f) by combining two exposures under single illuminants. This allows us to
compare ground truth results (b,g) to those achieved by our method (c,h). The difference images (d,i) show various sources of error in our
technique. For comparison, we also show the difference images between the input and the ground truth images (e,j). Although our results do
not match ground truth perfectly, the output of our technique is preferable to the input.
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(a) Average white balance (b) Local Color Shifts [Ebner 2004] (c) Our result

Figure 8: White balance comparisons. In column (a), we show results of global white balance using the average light source color. Here,
the color casts are never fully removed, especially in shadow regions. Column (b) shows results from Ebner’s method [2004] which tends to
produce colored halos because it assumes smooth illumination. The last column (c) shows our results. By comparison, our method is able to
restore the original colors more faithfully and produce a more appealing result. Notice that there are no color casts left, even in shadow areas.


